The use of ozone in medicine

Uwe Günter MD

www.biologische-orthopädie-berlin.de

introduction

Name: Uwe Günter, MD settled down since 2003 as orthopedist main focus: neural therapy lecturer of DGfAN teaching how accurate inject the right drug in the right region in the right case (e.g. ozone in a triggerpoint, muscle, joint or nerv)

biochemistry

Ozone

- instable triatomic oxygen or powerful oxidant
- be assigned to the biological group of reactive oxygen species ROS
- an important gas in the stratosphere
- has a pronounced absorption capacity in the UV range at wavelengths between 200 and 300nm
- has also a toxic effect on the pulmonary epithelia
- in the concentration under 200µg/ml ozone reduce inflammation (maximum worksite concentration MAK)

effects

steady state oxygen and ozone in stratosphere (ozonosphere) in tissue , cells and mitochondrion stimulation

- growth of cells,
- interferons,
- enzymes,
- antimicrobial factors

history

- Christian Friedrich Schönbein discovered ozone in 1840
- Justus **von Liebig** helped him
- Werner **von Siemens** developed a generator in 1857
- A. Wolff treated putrescent wounds during first world war
- Erwin **Payr** presented a publication about the treatment with ozone in surgery of wounds in 1935
- The dentist E. A. Fisch helps him , he used a generator named CYTOZON
- Joachim Hänsler developed together with Hans Wolff a generator, who makes accurate doses of ozone/oxygen mixtures in 1957 (OZONOSAN), both founded the medical ozone society in 1972

C. F. Schönbein 1799- 1868 Founder of Ozone

E. Payr 1871 - 1946 Medical Doctor

E.Fisch 1899-1966 Dentist

J. Hansler 1908-1981 Medical Doctor

H. Wolff 1924 - 1980 Medical Doctor

ozonlabs.com

empiric ozone therapy

- A. Wolff treated putrescent wounds during first world war
- E. **Payr** treated himself, E. A. **Fisch** helped him, both published his experiences , but only in wounds, **Aubourg** for rectal diseases
- H. **Wolff** introduced extracorporeal blood treatment
- E. **Payr** described some indications could b applied complementary to a basic therapy in cases of rheumatism, arthritis and inflammation diseases
- **Rokitansky**, **Washüttl** et al published studies and investigations on immunoactivation by the agency of Ozone

historical and basical trials

- Use of ozonized water in disinfection of parodontosis (*Türk 1976*)
- Intraarticular injektion in gonarthrosis (*Fahmy 1981*)
- Ozone changes the metabolism of erythrocytes and other blood cells in vitro and in vivo (*Washüttl et al. 1986*)
- Ozone increases the production of cytokines such as interferons and interleukins 1,2 and 6 (*Bocci et al. 1990, Bocci et al. 2005*)
- Ozone activates the antioxidants and radical scavengers such as SOD, GSHPx and GSHRx (*Peralta et al. 1999*)
- Low dose ozone regulates the angiogenesis (*Barakat et al. 2004*)

trials in rheumatism

- interactive mechanism between ozone and rheumatoid arthritis synovial fibroblast cells (*Chang JD et al. 2005*)
- intra-articular injection of O3 at 40 μg/mL can effectively suppress the joint swelling caused by RA in rats (*Chen et al. 2013*)
- reduction of pro-inflammatory cytokines such as TNF- α and IL-1 β ... and reestablishment of cellular redox balance in rats (*Vaillant JD et al. 2013*)
- Glutathione correlated with all clinical variables just after MTX+ozone. MTX+ozone increased the MTX clinical response in patients with RA (*Leon Fernandez OS et al. 2016*)

trials in back-pain and osteoarthrosis

- painkilling effect of ozone-oxygen injection on osteoarthritis of the joints and spine (*AI-Jazirir AA et al. 2008*)
- combination of Ozone and HA: significantly better outcome in osteoarthrosis of the knee (*Giombini A et al. 2016*)
- describe the rationale of oxygen-ozone therapy for the treatment of lumbar disk herniations (*Muto M et al. 2016*)
- efficacy of ozone concerning pain relief, functional improvement, and quality of life in patients with knee osteoarthritis (*Lope de Jesus CC et al. 2017*)

instruments

concentration - dose

- Injection in tissue like subcutis, muscles (triggerpoints) or connective tissue
 - $10\mu g/ml 200-500\mu g$
- Injection near the nervs, ganglions or arterial vessels
 - $10\mu g/ml 100-200\mu g$
- Injection in bursa and joints
 - $20-30\mu g/ml 100-300\mu g$
- Injection in indifference fieldes like scars
 - 30µg/ml 60-150µg

preparation

© Günter

requirement for joint injection

methods and technigques

quaddels

- **a** Cannula bevel should be facing up
- **b** Syringe cone should be facing down
- **c** Syringe scale should be facing up

subcutaneous injektion

trigger point injektion

Searching for Trigger points

Fixating - Injecting

trigger point injektion

away from your fingers

towards your fingers

injection in bursa

© Günter

injection in shoulder

injection on facet joint or near the articular nerv

injection on facet joint or near the articular nerv

injection near the ganglion oticum

injection near the ganglion stellatum

Horner-trias on the rihgt site

future

Trials under laboratory control

- C reactive protein
- Histamin
- Tumor necrosis factor
- Interleukin
- Metabolites like mercaptanes and thioether from dentogen latent infections after stimulation by cytokins like interferones, interleukines...
- Metabolites by the oxidative and nitrosative stress like malondialdehyde, nitrotyrosin, glutathion, homocysteine, serotonin and melatonin
- Vitamin B6, B9 (folat), B12, D...

Thanks for your attention